

PASSIVE & WIRELESS MONITORING SYSTEM FOR CRITICAL POWER ASSETS

RTEC[™] Revolution oF IDeas

www.rfrid.com

Industry First Battery Free UHF RFID Temperature Sensing System

Key Features

- Truly passive, wireless, CT free, easy to install, stable and secure
- Direct contact conductor monitoring, accurate and reliable data
- Digital monitoring, digital transmission, CRC correction
- Sensor global unique ID
- MODBUS RTU communication protocol
- Stable signal, long communication distance
- Integrated and automated system Integration

Hidden Risks: Electric Arc Explosion Caused by Overheating of Switchgear

Switchgear is designed to assure the safety of both the end user and the power distribution system, and ultimately determine the reliability of the power grid. Both developing and developed countries alike are continually increasing their demand for power and thus putting higher load requirements as grid demands continue to increase.

However the inevitable aging and aged equipment (majority of installed systems are more than 10years old) and deterioration of the internal switchgear components will increase the load of current flow causing overheating, resulting in arc accidents, loss and mishaps.

Arc blast is typically enormous in magnitude and often result in equipment damage, and both human and severe production losses. The photo on the right shows an actual damage to a medium-voltage switchgear after an explosion.

Various preventive measures exist, such as intermittent examinations and periodic inspections, resulting in countless lives been saved and help avoided serious outages. That said, there are still unacceptably high numbers of accidents, all of which could have been prevented using continuous monitoring.

One of the most common reasons is the lack of an effective proactive monitoring and preventive system. Studies have shown that the most vulnerable and accident prone areas in a switchgear are/include:

- Circuit breaker contact points
- Cable head connector
- Electrical connection points

A proactive monitoring of the temperature on these critical areas via early warning of over-heating would greatly enhance the safety and protection of end user and key production facilities.

REC[™] Revolution oF IDeas

www.rfrid.com

Unusually high temperatures are a precursor to accidents

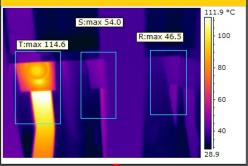

- Loose and faulty connections cause an increase of resistance at that localized point.
- The increased resistance causes increased heat in accordance with Ohm's law, P = I2R.
- The increase in heat will escalate until complete thermal failure of the connection occurs or the nearby insulation fails resulting in a fault.
- Figure 1 shows a thermal image of a loose switchgear connection that could lead to future failure if not repaired.

Figure 1 - Hot Fuse Connection

Temperature raise up

Install RTEC Passive Wireless temperature monitoring system helps to identify troublemaker at early stage

Accident, exploding

www.rfrid.com

RTEC

Temperature Reader				
Product	R5600 Temperature Reader		R5800 Temperature Reader	
Power Supply	AC/DC 80-265V Wide Power Supply		AC/DC 80-265V Wide Power Supply	
Work Frequency	RFID 902-928MHZ FCC RFID 866-868MHZ ETSI 1 Sets		RFID 902-928MHZ FCC RFID 866-868MHZ ETSI 2 Sets	
Communication Interface	RS485/Modbus RTU		RS485/Modbus RTU	
Dimension	80 x 115 x 45 mm		190 x 100 x 41 mm	
Antenna Port	4 ports		8 ports	
Operation Temperature	-20°C to +70°C		-20°C to +70°C	
Operation Temperature	-20°C to +70°C		-20°C to +70°C	
Antenna				
Product	RTEC ANT-CR		RTEC ANT-FX	
Antenna Gain	4 dBi		9 dBi	
Dimension	105 x 105 x 14.5 mm		260 x 260 x 30 mm	
Operation Temperature	-30°C to +70°C		-30°C to +70°C	
Attachment	Rivet hole / Magnet		Embrace hoop fixed, Φ30-50mm	
Temperature Sensor	- Cost	1		
Product	RTEC Minion	RTEC Cube-Ts	RTEC BFX-Ts	RTEC Mn-lite-Ts
Appliction	Busbar / Cable joint	Plum Contact	Cable joint	Busbar
Temperature Range	-20 ~+125°C	-20 ~+125° C	-20 ~+125° C	-20 ~+125°C
Accuracy	+/-1.5°C	+/-1.5°C	+/-1.5°C	+/-1.5°C
Working Mode	RFID-ISO18000-6C, Passive and Wireless			
Dimension	69 x 27 x 23 mm	14 x 9 x 4 mm	46 x 25 x 1.2 mm	37 x 25 x 12 mm
Mounting	Screws, Cable tie	Fixture	Screw in	Screws, Cable tie
Mounting	Sciews, Cable lie	Fixture	Sciew III	Screws, Cable lie


REC[™] Revolution oF IDeas

www.rfrid.com

STEC

• MV Switchgear

• LV Switchgear

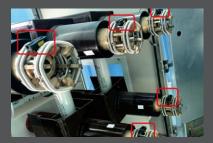
• 🖪

:: 0

• Transformer

Busbar / Cable joint

Circuit Breaker / Plum contact



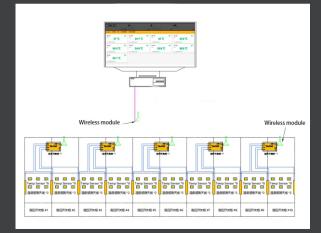
STEC

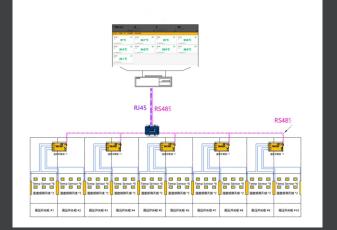
Applications

• Ring Main Units

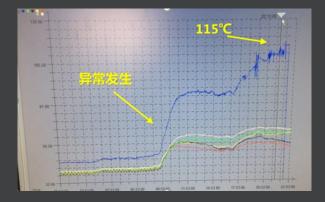
Nut Sensor / Screw-Ts

RMU Cable Head

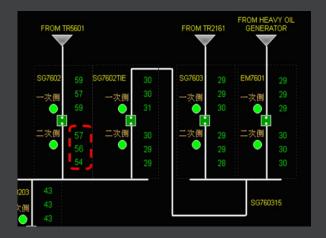

• Cable Branch Box



REC[™] Revolution oF IDeas


www.rfrid.com

System Architecture



Success Stories

REC[™] Revolution oF IDeas

www.rfrid.com